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Abstract

Atrophy of the medial temporal lobe (MTL) occurs with aging, resulting in impaired episodic

memory. Aerobic fitness is positively correlated with total hippocampal volume, a heavily

studied memory-critical region within the MTL. However, research on associations between

sedentary behavior and MTL subregion integrity is limited. Here we explore associations

between thickness of the MTL and its subregions (namely CA1, CA23DG, fusiform gyrus,

subiculum, parahippocampal, perirhinal and entorhinal cortex,), physical activity, and seden-

tary behavior. We assessed 35 non-demented middle-aged and older adults (25 women, 10

men; 45–75 years) using the International Physical Activity Questionnaire for older adults,

which quantifies physical activity levels in MET-equivalent units and asks about the average

number of hours spent sitting per day. All participants had high resolution MRI scans per-

formed on a Siemens Allegra 3T MRI scanner, which allows for detailed investigation of the

MTL. Controlling for age, total MTL thickness correlated inversely with hours of sitting/day (r

= -0.37, p = 0.03). In MTL subregion analysis, parahippocampal (r = -0.45, p = 0.007), entorhi-

nal (r = -0.33, p = 0.05) cortical and subiculum (r = -0.36, p = .04) thicknesses correlated

inversely with hours of sitting/day. No significant correlations were observed between physi-

cal activity levels and MTL thickness. Though preliminary, our results suggest that more sed-

entary non-demented individuals have less MTL thickness. Future studies should include

longitudinal analyses and explore mechanisms, as well as the efficacy of decreasing seden-

tary behaviors to reverse this association.

Introduction

Growing evidence from clinical trials, epidemiological and neuroscience research suggests that

physical exercise is a promising intervention for delaying the onset of dementia and Alzhei-

mer’s disease [1–4]. Further, physical activity has been shown to have notable beneficial effects

on brain structure, both microstructure and macrostructure [5–12]. In contrast to the large lit-

erature on physical activity, there is a paucity of research on the relationship between sedentary
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behavior and dementia risk [13]. This is concerning given that sedentary behaviors may be

independent from exercise and other physical activities, and therefore warrant independent

inquiry [13–14]. Indeed, one can be highly active yet still be sedentary for most of the day [14].

Several lines of evidence suggest that sedentary behavior may be a risk factor for the develop-

ment of age-related cognitive impairment [15–16]. A detailed projection of the effect of risk

factors on Alzheimer’s disease (AD) prevalence [17] suggests that approximately 13% of AD

cases worldwide may be attributable to sedentary behavior. A 25% reduction in sedentary

behavior could potentially prevent more than 1 million AD cases globally.

The atrophy and anti-neuroplastic processes occurring in cognitive decline are thought to

occur in the medial temporal lobe (MTL). Indeed, global MTL volume atrophy is known to be

associated with memory impairment and AD [18]. A growing number of studies have shown

that physical activity affects regional brain volumes [7–8, 11], specifically in the hippocampus.

However, very few studies have examined the effect of sedentary behavior on brain volumes. A

recent study [19] demonstrated an association between a 5-year decrease in white matter vol-

ume and increased amount of sedentary behavior in a sample of healthy older adults. A more

detailed analysis of the MTL subregional structure, including the hippocampus and neighbor-

ing cortical areas, is likely to be important [20]. For example, cortical thickness measures have

been used to assess structure changes with memory disorders with reasonable accuracy and

reliability, both cross-sectionally [21–22] and longitudinally [23].

Several mechanisms have been postulated for how physical activity improves brain health

[24–25], including increased blood flow in the brain to promote the development of new neu-

rons [26] and delaying brain structural and functional decline; in contrast, only few studies [27]

have looked at sedentary behavior from a mechanistic perspective. It has been suggested that

sedentary behavior may have deleterious effects on glycemic control, and the increased glycemic

variability and resultant decreased cerebral blood flow may lead to worse brain health [27].

In this preliminary analysis, we explore associations between physical activity levels, seden-

tary behavior and thickness in MTL and neighboring cortical sub-region structures in non-

demented middle-aged and older adults, examining the relationship of physical activity and

time spent sitting simultaneously on brain thickness. We hypothesized that both lower levels

of physical activity and time spent sitting will be associated with less thickness in MTL and its

subregions.

Methods

Participants

Participants were community-dwelling middle-aged and older adults recruited through local

advertising, media coverage of the study, and referrals by physicians and families for a longitu-

dinal study of mild memory changes intended to examine brain structure and function using

neuroimaging techniques in non-demented individuals (n = 49; [28]). Exclusion criteria

included participants with a lifetime history of dementia, major psychiatric or neurologic dis-

orders, alcohol or substance abuse, head trauma or systemic disease affecting brain function,

or uncontrolled hypertension or cardiovascular disease. In order to rule out reversible causes

of cognitive dysfunction, participants underwent screening evaluations including medical his-

tory and physical examination, laboratory tests and an electrocardiogram. Participants were

also screened to ensure normal global cognition using the Mini-Mental State Examination

(MMSE; at least 28) [29]. All participants also underwent standard clinical and laboratory test-

ing including body mass index (BMI) measurements and APOE genotyping [28]. The Hamil-

ton Rating Scales for both Depression [30] and Anxiety [31] were administered to assess mood

and anxiety, respectively. Participants meeting criteria for depressive or anxiety disorders
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(n = 9) were excluded to control for impact of mood on study measures. Five additional partic-

ipants, who were younger than 45 years of age, were not included, thus the final sample size

was 35 for the analyses. The study procedures were performed at the Semel Institute for Neu-

roscience and Human Behavior at the University of California, Los Angeles. The study was

reviewed and approved by the UCLA Human Subjects Protection Committee and participants

gave written informed consent according to the UCLA Human Subjects Protection Committee

procedures.

Neuroimaging and image analysis

All MRI scans were performed on a Siemens Allegra 3T head-only MRI scanner. We acquired

sagittal T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE) vol-

umetric scans (TR 2300ms, TE 2.93ms, slice thickness 1mm, 160 slices, inplane voxel size 1.3 ×
1.3 mm, FOV 256mm) for volumetric measurements and high-resolution oblique coronal

T2-weighted fast spin echo (FSE) sequences for structural segmentation and unfolding proce-

dures (TR 5200ms, TE 105ms, slice thickness 3 mm, spacing 0 mm, 19 slices, in-plane voxel

size 0.39 × 0.39 mm, FOV 200 mm).

We used cortical unfolding [21–22] to enhance the visibility of the convoluted MTL cortex

by flattening the entire MTL gray matter volume to 2D-space (Fig 1). First, we manually

defined white matter and cerebrospinal fluid (CSF) on the oblique coronal T2 FSE structural

MRI sequence with high in-plane resolution. In order to maximize visibility of the images for

manual segmentation, high in-plane resolution (0.39 × 0.39mm) is critical. To minimize the

effect of this larger through-plane resolution across slices on boundary changes, we acquired

Fig 1. Methods for producing flat maps. Oblique coronal images are acquired to cover the long axis of the hippocampus as shown in image A. This image is cropped over

the area of interest (red square) and shown in greater detail in image B. The gray matter ribbon (shown in bright blue) is segmented out from the surrounding MTL area.

C. Boundaries between subregions are demarcated on each slice and projected to the corresponding location in flat-map space (shown in E). Boundaries between these

subregions are shown in C and projected to flat-map (or 2D) space as shown in Fig E. D. Thickness in gray matter space is calculated in-plane space by taking the

maximum distance value of the corresponding 3D voxels across all layers and multiplying by two to arrive at a thickness value for each voxel. E. The subregions are labeled

as follows: cornu ammonis (CA) fields 1, 2, 3 and the dentate gyrus (DG) subiculum (Sub), entorhinal cortex (ERC), perirhinal cortex (PRC), parahippocampal cortex

(PHC) and fusiform cortex (Fus). Boundary colors in C correspond to the same color scale in E and are labeled according to the Boundary Demarcation color bar.

https://doi.org/10.1371/journal.pone.0195549.g001
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images perpendicular to the long axis of the hippocampus (HC) where anatomical variability

in HC structures is smallest, thereby minimizing variability from slice to slice while maximiz-

ing in-plane resolution where anatomic variability is greatest. Once segmentation is complete,

the original images are interpolated by a factor of 7, resulting in a final voxel size of 0.39 × 0.39

× 0.43 mm. Next, up to 18 connected layers of gray matter are grown out from the boundary

of white matter, using a region-expansion algorithm to cover all pixels defined as gray matter.

This produces a gray matter strip containing cornu ammonis (CA) fields 1, 2, and 3, the den-

tate gyrus (DG), subiculum (Sub), entorhinal cortex (ERC), perirhinal cortex (PRC), parahip-

pocampal cortex (PHC), and the fusiform gyrus (FUS). We are unable to distinguish between

CA fields 2, 3, and DG due to limits in resolution; thus we treat these regions as a single entity

(CA23DG). It is this strip of gray matter that is the input for the unfolding procedure, an itera-

tive algorithm based on multidimensional scaling (http://www.ccn.ucla.edu/wiki/index.php/

Unfolding). We delineated boundaries between subregions on the original in-plane MRI

images, based on histological and MRI atlases and then projected them mathematically to their

corresponding coordinates in flat map space. We calculated cortical thickness in all MTL sub-

regions (CA23DG, CA1, SUB, ERC, PRC, PHC, and FUS), averaged over left and right hemi-

spheres, as well as total MTL cortical thickness by averaging thickness across these subregions.

To calculate thickness, for each gray matter voxel we computed the distance to the closest non-

gray matter voxel. In 2D-space, for each voxel, we took the maximum distance value of the cor-

responding 3D voxels across all layers and multiplied by two. Mean thickness in each subre-

gion was calculated by averaging thickness of all 2D voxels within each region of interest.

Manual segmentations were finalized and readied for unfolding procedures by the same

person. This investigator was unaware of all demographic and clinical information. All manual

segmentations were performed in native space, in line with previous studies using the cortical

unfolding technique. We have previously reported interrater and test-retest reliability analyses

for the manual procedures involved [32].

We also used a whole brain voxel-based approach to examine regions of significant differ-

ences by physical activity levels. Whole brain T1 scans were preprocessed using Freesufer v6.0

qdec (https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all). All structural outputs were visu-

ally inspected for proper cortical segmentation before inclusion in any analyses.

Assessment of physical activity levels and time spent sitting

Level of physical activity and time spent sitting were determined using the self-reported Inter-

national Physical Activity Questionnaire modified for older adults (IPAQ-E), which is vali-

dated for use in non-demented middle-aged and older adults [33–35].The IPAQ-E consists of

4 sets of questions assessing walking, moderate physical activities, vigorous physical activities,

and average time spent sitting per day. Total physical activity is quantified by weighting each

type of activity by its energy requirements defined in metabolic equivalent units (METs) to

yield a score in MET-minutes per week. For the current analyses, physical activity was exam-

ined both as a continuous variable and as a categorical variable: participants were dichoto-

mized into either “lower” or “higher” activity groups based on a standard metabolic equivalent

(MET) cutoff of 1500 MET-minutes per week. This cutoff was chosen as a mid-point between

no activity (0 METs) and high activity (3000 METs), as defined on the IPAQ website (www.

ipaq.ki.se). Sitting data from the IPAQ-E was reported as average number of hours spent sit-

ting per weekday over the past week. Weekend days were not included as prior work has

shown lower accuracy of self-reported sitting for weekend days [36].
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Statistical analysis

Prior to analyses, all data were inspected for outliers, skewness, and homogeneity of variance

to ensure their appropriateness for parametric statistical tests. Due to the skewed distribution

of physical activity levels, we used log-transformed values in all analyses using continuous

physical activity measures. Descriptive statistics were compiled for all demographic data and

study variables. We first conducted exploratory univariate analyses examining if MTL thick-

ness (total as well as subregional) were related to age, sex, BMI, education, ethnicity, and

APOE-4 status, using Pearson’s correlations for continuous and t-tests for binary measures.

Only those variables that were associated with a p� 0.1 in the univariate analyses were

retained for further modeling. A general linear model was used to determine if total MTL

thickness was significantly associated with physical activity (either continuous or defined as

lower vs. higher) and time spent sitting, controlling for those covariates identified above. We

also examined interaction terms between both physical activity and sitting with the potential

covariates. If either of the two predictors of interest (physical activity or sitting) was found to

have a significant effect on total MTL thickness, follow-up analyses were conducted to examine

which subregions within the MTL contributed to the significant finding. To correct for infla-

tion of Type I error, we used the Benjamini-Hochberg correction for false discovery rate to

adjust for multiple comparisons. For significant associations, findings are also presented as

adjusted Pearson correlation coefficients (r). A significance level of p� 0.05 (two-tailed) was

used for all inferences.

As a sensitivity analysis, we examined regions of significant differences by physical activity

levels using the whole brain voxel-based approach. Two models were set up using FreeSurfer:

(1) Does the correlation between thickness and time spent sitting differ from zero (using sit-

ting hours as a continuous covariate of interest, including nuisance covariates for age, sex,

BMI, education, ethnicity, and APOE-4 status)? (2) Does the average thickness differ between

low and high physical activity (using physical activity groups (low and high) as a discrete

(fixed) factor, including the same nuisance covariates as above)? Dependent variables used for

both analyses included surface-based and morphometric thickness measures, using a smooth-

ing parameter of 20 full-width at half-maximum (FWHM). A “Different Offset, Different

Slope” (DODS) design matrix type was chosen for both analyses. A False Discovery Rate

(FDR) threshold of 0.05 was applied to address the multiple comparisons issue. A Monte Carlo

Null-Z Distribution (threshold = 2.0 (p = 0.01), Sign = absolute) was also applied to the analy-

ses to correct for multiple comparisons.

Results

Demographics and sample characteristics

Participants (n = 35; 82.9% Caucasian) were middle-aged and older adults (25 women, 10

men) with an age range of 45 to 75 years (mean ± SD = 60.4 ± 8.1); education in the sample

averaged 16.4 ± 2.5 years (Table 1). BMI of the sample ranged from 19 to 35 (25.4 ± 3.6), with

15 participants having a BMI of over 25. MMSE and the other cognitive scores for all partici-

pants were within expected range and indicated that all participants were cognitively normal.

The scores for the Hamilton Rating Scales for Depression and Anxiety averaged 1.8 ± 3.0 (SD)

and 4.3 ± 3.5 (SD), respectively. There were 15 APOE-4 carriers and 20 non-carriers.

Physical activity levels averaged 1521 ± 1225 MET minutes per week, and 21 individuals

had lower levels whereas 14 participants had higher levels (using a standardized cutoff of

1500 MET-minutes per week); time spent sitting averaged 7.2 ± 3.3 hours/day for all

Sedentary behavior and medial temporal lobe thickness

PLOS ONE | https://doi.org/10.1371/journal.pone.0195549 April 12, 2018 5 / 13

https://doi.org/10.1371/journal.pone.0195549


participants. Time spent sitting was not related to physical activity levels (r = 0.03, p = 0.9)

or groups (t(33) = 0.8, p = 0.4).

Relationship between MTL thickness measures, physical activity levels, and

sitting

Only age was associated (p � .1) with total and subregional MTL thickness, and was there-

fore included as a covariate in the general linear models. These models thus included time

spent sitting, physical activity (either as a continuous or categorical variable) and age as

predictors. None of the interaction terms (between age and physical activity; age and sit-

ting time) were found to be significant. A significant negative association was found

between hours of sitting in a day and total MTL thickness (F(1,31) = 5.0, p = .03)

(Table 2). In contrast, physical activity, whether entered into the model as a continuous

(F(1,31) = 0.04, p = .8)) or as a categorical (F(1,31) = 0.1, p = .7)) measure was not associ-

ated with thickness. Region-specific analyses revealed that thicknesses of the entorhinal

cortex (F(1,31) = 4.0, p = .05), parahippocampal cortex (F(1,31) = 8.3, p = .007), and subi-

culum (F(1,31) = 4.5, p = .04) were significantly associated with time spent sitting. All

these associations survive the Benjamini-Hochberg correction for false discovery rate. As

with total MTL thickness, physical activity was not associated with any of the subregional

thicknesses. Partial correlations (adjusting for age) between time spent sitting and MTL

thicknesses, for those regions with significant associations, are: Total: r = -0.37, p = .03;

entorhinal cortex: r = -0.33, p = .05; parahippocampal cortex: r = -0.45, p = .007; and subi-

culum: r = -0.36, p = .04 (Fig 2).

In addition, the results of the fully adjusted model (including age, sex, BMI and education

as covariates) with sitting time and physical activity as predictors of total MTL thickness

Table 1. Demographic, clinical and physical activity characteristics of study sample.

Characteristic� Sample (n = 35)

Age 60.4 (8.1)

Sex—Female 25 (71.4%)

Race—Caucasian 29 (82.9%)

Education (years) 16.4 (2.5)

BMI 25.4 (3.6)

APOE-4 15 (42.9%)

MMSE 29.3 (0.7)

Digit Symbol$ 66.9 (16.2)

Verbal Paired Associations¶ 6.6 (2.2)

Selective Reminding^ 8.0 (3.3)

HAM-D 1.8 (3.0)

HAM-A 4.3 (3.5)

Time sitting (hours/day) 7.2 (3.3)

Physical activity (MET minutes per week) 1521 (1225)

�Results are reported as mean (SD) for continuous variables and number of participants (%) for categorical variables.

Abbreviations: BMI = Body mass index; APOE-4 = Apolipoprotein E-4; MMSE = Mini-mental status exam;

HAM-D = Hamilton depression scale; HAM-A = Hamilton anxiety inventory; MET = Metabolic equivalent units
$ Scores range from 49 to 72, with higher scores indicating better functioning.
¶ Scores range from 0 to 8, with higher scores indicating better cognitive functioning.

^Scores range from 0 to 12, with higher scores indicating better cognitive functioning.

https://doi.org/10.1371/journal.pone.0195549.t001
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indicate that the only predictor that approached significance was time spent sitting (β = -0.02,

p = .07); as with the reduced model, physical activity was not significant (β = 0.01, p = .8). Fur-

ther, the whole brain voxel-based structural analyses found no regions of significant differ-

ences by physical activity levels or time spent sitting.

Discussion

In this neuroimaging study examining relationships between self-reported sedentary behavior,

physical activity and thickness of MTL, we found that sedentary behavior, but not physical

activity, was associated with less thickness in the MTL and its subregions (parahippocampal

cortex, entorhinal cortex and subiculum). MTL structures are essential to memory function

[37–38] and the hippocampal formation and entorhinal cortex are particularly affected by

neuropathological findings very early in the course of AD, prior to dementia [39–40]. A review

suggests that the parahippocampal and medial entorhinal cortex are in particular essential to

spatial recognition [37]. Thus, the finding that more sedentary time is associated with less

thickness in MTL is clinically relevant and suggests that reducing this behavior may be a possi-

ble target for interventions designed to improve brain health in middle-aged and older adults.

While previous studies have shown that physical activity is related to brain imaging measures

such as total brain and hippocampal volumes, we did not find a significant association of physi-

cal activity and MTL thickness in this sample. This study explores the associations of physical

activity and time spent sitting simultaneously on brain thickness. Hence it is possible that seden-

tary behavior is a more significant predictor of brain structure, specifically MTL thickness, and

that physical activity, even at higher levels, is not sufficient to offset the harmful effects of sitting

for extended periods of time. Indeed, it has been suggested recently [15] that reducing sedentary

behavior may reduce glycemic variability, protecting against cognitive decline and this lifestyle

change may be an additional strategy, in addition to increasing physical activity, especially in

Table 2. Predictors of total and regional medial temporal lobe (MTL) thickness.

Model Predictor β (95% CI) p-value

Total MTL thickness Sitting -0.02 (-0.04, -0.002) 0.03
Physical activity� 0.007 (-0.07, 0.08) 0.8

CA1 thickness Sitting -0.004 (-0.02, 0.008) 0.5

Physical activity� -0.02 (-0.06,0.03) 0.5

CA23DG thickness Sitting -0.007 (-0.03, 0.01) 0.5

Physical activity� 0.05 (-0.02, 0.13) 0.2

ERC thickness Sitting -0.03 (-0.07, -0.001) 0.05
Physical activity� -0.03 (-0.16, 0.10) 0.6

FUS thickness Sitting -0.01 (-0.03, 0.006) 0.2

Physical activity� 0.02 (-0.06, 0.09) 0.7

PHC thickness Sitting -0.05 (-0.08, -0.01) 0.007
Physical activity� 0.03 (-0.11, 0.17) 0.7

PRC thickness Sitting -0.03 (-0.06, 0.004) 0.09

Physical activity� -0.07 (-0.18, 0.04) 0.2

SUB thickness Sitting -0.02(-0.05, -0.001) 0.04
Physical activity� 0.05 (-0.04, 0.13) 0.3

�Reported statistics are for physical activity modeled as log-transformed continuous variable; for all models, age was included as a covariate.

Abbreviations: CA1 = Cornu Ammonis field 1; CA23DG = Cornu Ammonis fields 2,3 and Dentate Gyrus; ERC = Entorhinal Cortex; FUS = Fusiform Gyrus;

MTL = medial temporal lobe; PHC Parahippocampal Cortex; PRC = Perirhinal Cortex; SUB = Subiculum.

https://doi.org/10.1371/journal.pone.0195549.t002
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older adults. In fact, increasing evidence suggests that intervention studies aimed at improving

subsequent health outcomes in older adults may be more effective if reducing sedentary behav-

ior is the more immediate goal [41].

The voxel-based morphometric analysis did not reveal significant relationships between

volumetric brain data and either time spent sitting or PA. However, we [21–22], and others

[38, 42], have demonstrated that age-related differences in regional brain volume measure-

ments may reflect differences in underlying pathological changes related to either normal

aging or disease-related processes. In fact, assessing volume of parcellated cortical regions, as

in the voxel-based morphometric analysis, is a composite measure related to both surface area

and thickness. It is not clear whether volumetric decreases in medial temporal lobe cortical

regions in normal aging or age-related diseases (such as AD) are due to thinning, loss of sur-

face area, or both, nor is it clear whether aging and AD differ in their effects on these proper-

ties. However, previous results [21] indicate that assessments of cortical thickness are more

sensitive to structural brain changes in cognitively intact older adults. Structural changes in

these subjects are likely to be much more subtle than the gross morphological brain changes

seen in clinically-diagnosed Alzheimer’s disease patients and hence are more likely to be

observed with cortical thickness related measures than voxel-based morphology methods.

To date, no studies have explored associations between sedentary behaviors and MTL sub-

region structure. A previous study [43] has explored the association between HC physiology

(blood flow) and sedentary time in healthy older adults. These authors found that the relation-

ship between sedentary time and cerebral blood flow in the left hippocampus differs by APOE-

4 status, whereby APOE-4 carriers show higher cerebral blood flow as a function of longer sed-

entary time compared to non-carriers, possibly suggesting a cerebral blood flow regulatory

response to compensate for metabolic alterations in dementia risk i.e. blood flow increases due

to increased demand for glucose and oxygen to support neuronal activity. In our study we did

not find an effect of APOE-4 status to thickness in the MTL.

The mechanism of how sedentary behavior is associated with thickness in MTL regions is

uncertain. Sedentary behaviors appear to have direct effects on neurobiological processes. A

review [36] outlines evidence to suggest that sedentary behavior may have detrimental effects

on the brain via reducing neurogenesis, synaptic plasticity, neurotrophin production, angio-

genesis, and by increasing inflammation, all pathological processes known to affect hippocam-

pal integrity. Sedentary behavior is also associated with increased cardiovascular and

metabolic risk factors, such as diabetes, hypertension, and obesity [44] and impaired vascular

supply may also play a role. Studies such as this one, indicating associations between sedentary

time and neuroimaging measures, are an important first step to determining the pathways by

which physical activity and sedentary behaviors affect the brain.

We are aware of only one rodent study exploring the effects of physical activity cessation on

HC neuroplasticity [45]; in general, the findings are concordant with our study. In this study,

male C57BL/6 mice of 4 weeks old were exposed to a variety of conditions until 21 weeks old

to allow for an assessment of the effects of exercise cessation. The marker of neurogenesis

(BrdU-labelled cells) in the dentate gyrus was equivalent between mice exposed to no exercise

vs. mice exposed to exercise for 8 weeks, then changed to no exercise. Another marker of neu-

rogenesis (BrdU-positive cells to doublecortin-positive immature neurons) was significantly

lower in the exercise cessation group vs. all other groups. This data suggests exercise cessation

Fig 2. Correlation of average number of hours spent sitting per day to thickness. (A) Total medial temporal lobe

(MTL) (r = -0.37, p = .03) and (B) parahippocampal (r = -0.45, p = .007) thickness correlated inversely with hours of

sitting/day, controlling for age.

https://doi.org/10.1371/journal.pone.0195549.g002
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has anti-neuroplastic effects in the dentate gyrus. Assessing the direct effects of sedentary

behavior on rodent models will allow for a more detailed understanding of mechanisms.

This preliminary analysis of subjectively reported physical activity and sedentary time has

limitations. This study utilized a questionnaire to explore physical activity and sedentary behav-

ior. While such as measure is simple and easy to use, it has limitations, especially in older adults

with difficulty recalling past events. However, it should be noted that all MMSE scores were nor-

mal in our sample, and no participants had functional deficits. This study drew from a conve-

nience sample of non-demented middle-aged and older adults. An important extension of this

study would be to explore MTL structures in healthy younger adults, as an example of universal

or primary prevention as opposed to our secondary prevention study of those at-risk individuals

with minimally detectable symptoms. Another key limitation is the small sample size, and it is

possible that we did not have sufficient power to detect the association of physical activity or the

interaction terms. We also did not have variables such as hypertension, smoking and alcohol

consumption that may have an effect on thickness of brain structures. Finally, this analysis was

cross-sectional and therefore causation cannot be assessed. A longitudinal assessment is impor-

tant to allow for some conclusions regarding causation and/or time course of observed changes.

Strengths of this study include the high resolution MRI scanning, which allows for a detailed

assessment of MTL structures as well as simultaneously examining the associations of sedentary

behavior and physical activity on MTL structures. A wide range of covariates, including age,

sex, education, ethnicity, BMI, and APOE-4 status was also evaluated.

The findings of the present study, while novel and with important implications, raise several

unanswered questions. Exploring the role of biological mechanisms as mediators for the effects

of sedentary behavior on neuroplasticity markers is a key consideration (e.g. serum immune

biomarker assessment). There may also be differences in the effect of various types of ‘sitting’

behaviors, and this is an area for further investigation. It is possible that there may be two dis-

tinct groups: mentally active sitting and mentally inactive sitting. In mentally active sitting,

individuals may be attending to cognitive demanding tasks such as crossword puzzles, docu-

mentation, writing, or computer games. In mentally inactive sitting, individuals may be engag-

ing in less demanding, passive tasks such as watching television or movies. Other lifestyle

factors such as dietary patterns may also impact these findings and so should be explored and

controlled for in future studies.

Conclusions

In this preliminary study of middle-aged and older adults, self-reported hours per day spent

sitting, but not physical activity level, was associated with less thickness in the MTL substruc-

tures. These findings are novel and require further exploration in longitudinal studies and

analysis of mediating mechanisms. Better understanding the effects of sedentary behavior on

our brains is important given the global epidemic of physical inactivity and sedentary

lifestyles.
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