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Abstract 39 
 40 
We investigated sex differences in the association between a measure of physical health, 41 
cardiorespiratory fitness (CRF), and brain function using resting state functional connectivity 42 
fMRI. We examined these sex differences in the default, frontoparietal control, and cingulo-43 
opercular networks, assemblies of functionally connected brain regions known to be impacted by 44 
both age and fitness level. Forty-nine healthy older adults (29 female) were scanned to obtain 45 
measures of intrinsic connectivity within and across these three networks. We calculated global 46 
efficiency (a measure of network integration), and local efficiency (a measure of network 47 
specialization) using graph theoretical methods. Across all three networks combined local 48 
efficiency was positively associated with CRF, and this was more robust in male versus female 49 
older adults. Further, global efficiency was negatively associated with CRF, but only in males. 50 
Our findings suggest that in older adults, associations between brain network integrity and 51 
physical health are sex-dependent. These results underscore the importance of considering sex 52 
differences when examining associations between fitness and brain function in older adulthood.  53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
Abbreviations: cardiorespiratory fitness (CRF); resting state functional connectivity (RSFC); 61 
highest density intervals (HDI) 62 
  63 
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Physical exercise improves brain physiology, structure, and function in older adulthood 65 

(14, 46). Exercise has been shown to influence neural growth factors and enhance processes such 66 

as angiogenesis, synaptogenesis, and neurogenesis (16; but see 74). These changes are also 67 

measurable at a systems level, impacting cortical structure and function (25; 55). 68 

Cardiorespiratory fitness (CRF), a measure of physical fitness indexing oxygen consumption and 69 

transport (42), has been associated with greater grey matter volume and density in frontal and 70 

parietal cortices as well as increased hippocampal volumes (12; 24; 37; 85). These changes are 71 

associated with higher cognitive functioning, particularly in domains most susceptible to age-72 

related decline, including executive functioning and memory (14; 85). 73 

Cardiorespiratory fitness is also related to changes in the functional architecture of the 74 

brain measured at rest (84). Estimates of resting-state functional connectivity (RSFC) 75 

characterize coherent patterns of intrinsic neural activity in the absence of explicit task demands. 76 

RSFC measures have been used to study brain health both in typical and atypical aging (20). 77 

RSFC is thought to reflect repeated patterns of coherent neural oscillatory activity reinforced 78 

across time and thus provides a stable, neurophysiological marker of brain function (6; see 78 for 79 

a review). Thus, measures of RSFC are useful neural markers for assessing the impact of 80 

systemic lifestyle influences, such as CRF, on brain function. Further, RSFC measures are 81 

readily obtained in older adult populations and have been shown to be both replicable (7, 43), 82 

and reliable (73; 88). 83 

RSFC is altered in normal aging (e.g. 13; 30; 31) and these changes appear to target 84 

functional connectivity within and between networks associated with higher-order cognitive 85 

functioning (30; 31). The default, frontoparietal control, and cingulo-opercular networks have 86 

been particularly implicated (30; 31). The default network consists of the ventromedial PFC, 87 
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posterior cingulate and retrosplenial cortex, inferior parietal lobule, lateral temporal cortex, 88 

dorsomedial PFC and the hippocampal formation among others (9). This network is implicated 89 

in internally-focused cognitive processes (8; 41). The frontoparietal control network is composed 90 

of anterior and dorsolateral PFC, anterior inferior parietal lobule, anterior cingulate, and insular 91 

cortices and is associated with intrinsic (i.e. top down) cognitive control processes (22; 80).  92 

Finally, the cingulo-opercular network (22), which encompasses anterior insula/operculum, 93 

thalamus, and the dorsal anterior cingulate cortex, is associated with sustaining cognitive set as 94 

well as external or salience-driven (i.e. bottom-up) attentional processing. Common age-related 95 

changes across these networks include reduced within, or local, connectivity and increased 96 

between, or more global, connectivity (40). More broadly, aging is associated with greater 97 

overall network integration and reduced functional segregation, as well as reduced connectivity 98 

within networks (13; 30; 31; 75; 84).  99 

Functional connectivity of the default, frontal-parietal, and cingulo-opercular networks is 100 

also modulated by fitness and activity levels in older adulthood (81; 82; 84). CRF has been 101 

positively associated with global efficiency, a measure of network integration and distributed 102 

processing and negatively associated with local efficiency, a measure of within network 103 

segregation and regional specificity across the whole brain (48, and see 68, for a review of 104 

network measures). These findings suggest that greater CRF is associated with increased 105 

network integration and reduced segregation between networks in older adults (48). However, 106 

the evidence remains equivocal. Local, or less-distributed, processing has also been positively 107 

associated with exercise levels (44; 45). 108 

There is evidence for a relationship between RSFC and CRF in older adulthood and 109 

evidence of sex differences in functional brain aging. Yet sex differences in the relationship 110 
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between CRF and brain function in older adulthood have not been investigated. Older males and 111 

females show differential benefits in cognitive performance associated with exercise and fitness 112 

levels. Studies with a greater proportion of female participants report greater cognitive gains 113 

(14). A recent meta-analysis reported greater exercise-related cognitive benefits in females (4). 114 

Yet the neural basis of sex differences in the relationship between fitness and brain function in 115 

older adults has not been directly explored.   116 

To address this gap, here we investigate sex-differences in the impacts of CRF on RSFC 117 

in older adults. We examine this relationship specifically focusing on three higher-order 118 

association networks (13) that have been most reliably associated with changes both in aging and 119 

fitness levels: the default network, frontoparietal control network and cingulo-opercular network. 120 

We hypothesize that local, or greater within network, connectivity would be associated with 121 

higher CRF levels in older adults (44; 45). As there are no studies investigating sex differences 122 

in the association between RSFC and CRF, we are unable to pose specific hypotheses. However, 123 

greater exercise-related cognitive benefits have been observed in older females (4). This suggests 124 

that patterns of functional brain activity associated with better cognitive performance, i.e. 125 

increased local efficiency, should be more reliably observed in females.  126 

 127 

1. Methods 128 

1.1.   Participants 129 

Fifty-one older adults participated in this study and were recruited from the community in 130 

Ithaca, New York. All participants were healthy, over the age of 60, with normal or corrected-to-131 

normal visual acuity, and no history of psychiatric, neurological, or other medical illness that 132 

could compromise cognitive functions. In addition to the inclusion criteria noted above, 133 
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participants were required to have Geriatric Depression Scores equal to or less than 9 (i.e. within 134 

the ‘normal’ range; 87), as well as Mini-Mental State Exam scores of greater than 25 (26) to be 135 

eligible. Two participants were excluded at this point due to elevated scores on the Geriatric 136 

Depression measure, resulting in a final sample of forty-nine older adults (age mean= 67.25 y; 137 

SD= 5.44; years of education = 17.06 y; SD = 2.77; 29 women). All procedures performed in the 138 

studies were approved by the Institutional Review Board at Cornell University and are in 139 

accordance with the ethical standards described in the 1964 Helsinki declaration and its later 140 

amendments, or comparable ethical standards. Participants gave written informed consent in 141 

accordance with the Institutional Review Board of Cornell University.  142 

 143 

1.2.  Cardiorespiratory Fitness Assessment  144 

Our CRF metric was derived using a formula developed by Jurca and colleagues (47). 145 

This formula takes a participant’s height, weight, age, sex, resting heart rate, and self-reported 146 

physical activity level to derive a CRF score in metabolic equivalents (1 metabolic equivalent= 147 

3.5 ml O2 uptake ∙ kilograms of body mass-1 ∙ minutes -1). The metabolic equivalent values 148 

derived from the formula have been validated in a population of older adults (58) and 149 

significantly correlated with explicitly recorded metabolic equivalent values from the maximal 150 

graded exercise test and with CRF estimates derived from submaximal field-testing. The formula 151 

was further validated by McAuley and colleagues and significantly correlated with a physician-152 

supervised maximal exercise test and a 1-mile timed walk (60). The authors also reported that 153 

formula-derived CRF estimates were significantly correlated with cognitive function, 154 

hippocampal volume, and memory complaints consistent with the timed walk and exercise-155 

derived fitness measures (60). Height and weight were obtained during the MRI safety protocol 156 
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at time of scanning and were self-reported In accordance with previous studies using this 157 

measure (47; 58; 60), participants self-reported their level of physical activity given a scale of 1-158 

5 with predetermined descriptions as outlined in the original protocol by Jurca and colleagues 159 

(47). For example, an activity level of 3 requires participation in aerobic exercise (such as brisk 160 

walking, swimming, or jogging) at a comfortable pace for 20-60 minutes per week (47).  While 161 

this self-report component may impact the reliability of the measure (65) our approach is 162 

consistent with earlier validation studies (58; 60). Resting heart rate was obtained using Biopac 163 

Systems Software obtained during resting-state MRI scanning (© 2017 BIOPAC Systems Inc.)  164 

 165 

1.3.Neuroimaging  166 

1.3.1. Structural imaging acquisition, preprocessing and analysis 167 

Anatomical scans from the Cornell MRI Facility were acquired on a GE750 Discovery 168 

series 3T scanner with a T1-weighted volumetric MRI magnetization prepared rapid gradient 169 

echo (repetition time (TR)=2500ms; echo time (TE)=3.44ms; flip angle (FA)=7°; 1.0mm 170 

isotropic voxels, 176 slices). Anatomical scans were acquired during one 5m25s run with 2x 171 

acceleration with sensitivity encoding. Structural data were corrected for non-uniform intensities, 172 

affine-registered to Montreal Neurological Institute (MNI) atlas (15) and skull-stripped using 173 

Freesurfer (Athinoula A. Martinos Center for Biomedical Imaging, Harvard University, 174 

Cambridge, MA, USA).  175 

1.3.2. Functional imaging acquisition, preprocessing and analysis 176 

Multi-echo functional images were acquired during two 10m 06s resting-state scans. 177 

Participants were instructed to keep their eyes open, blinking and breathing normally. Multi-echo 178 

fMRI is a data acquisition sequence developed to enhance the blood oxygenation level (BOLD) 179 
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contrast (50; 51). This method uses multiple echoes obtained at different echo times (TEs) 180 

corresponding to different T2* weighted tissue relaxation rates (52). After recombining the echo-181 

times, independent components analysis is used to remove noise components (i.e. originating in 182 

white matter, CSF, movement, etc.) which are now more readily identifiable due to the greater 183 

signal contribution from the varying TEs. This procedure, known as multi-echo independent 184 

components analysis or ME-ICA, can render up to fourfold increases in the temporal signal-to-185 

noise ratio (52). Resting-state functional scans were acquired using a multi-echo echo planar 186 

imaging (ME-EPI) sequence with online reconstruction (TR=3000ms; TE’s=13.7, 30, 47ms; 187 

FA=83°; matrix size=72x72; field of view (FOV)=210mm; 46 axial slices; 3.0mm isotropic 188 

voxels) with 2.5x acceleration with sensitivity encoding.  189 

Preprocessing was conducted with ME-ICA version 2.5 (50; 51) 190 

(https://afni.nimh.nih.gov/pub/dist/src/pkundu/meica.py). The full ME-ICA preprocessing 191 

procedure has been described previously (76). Following ME-ICA, we identified nuisance 192 

components using a semi-automated procedure. This involved conducting a probabilistic 193 

independent components analysis (5) via multivariate exploratory linear decomposition into 194 

independent components (MELODIC) version 3.14, part of FSL (FMRIB’s Software Library, 195 

www.fmrib.ox.ac.uk/fsl) to isolate and extract remaining noise components following the ICA 196 

pre-processing.  197 

Based on previous evidence of age-associated declines in RSFC (13; 30; 40; 84) or 198 

fitness-related modulation of network integrity (81; 82; 84), the default, cingulo-opercular, and 199 

frontoparietal control networks were selected a priori as our networks of interest. We used 200 

previously defined regions of interest based on a resting state cortical parcellation (38). This 201 

parcellation was derived using resting state data and has 333 ROIs, providing sufficient 202 
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resolution to capture individual differences prominent in aging (27), and to avoid compromising 203 

sensitivity and blurring regional boundaries when networks are decomposed into simpler 204 

parcellations (64). Connectivity analyses were conducted using the Matlab-based Brain 205 

Connectivity Toolbox (68; 69;  http://www.brain-connectivity-toolbox.net/). For a detailed 206 

description of this procedure, see Rubinov and Sporns (68; 69).  207 

Pre-processed resting data were co-registered with the MNI-transformed anatomical scan 208 

within subjects. We identified the three a priori selected networks corresponding to 105 regions 209 

of interest (38; 41 default, 24 frontoparietal, and 40 cingulo-opercular nodes). Regions 210 

corresponding to these networks are illustrated in Figure 1. Time courses were extracted for each 211 

region of interest and a node-wise correlation matrix was created. The matrices were thresholded 212 

using a cost density function (averaged over a range of 0.10-0.3, steps of .01). These values were 213 

used to calculate our topological parameters of interest. 214 

 215 

[INSERT FIGURE 1 HERE] 216 

 217 

1.3.3. Functional connectivity metrics 218 

To measure the integrity of functional brain networks we used graph theoretical 219 

measures. Graph theory depicts the brain as a set of interacting nodes and edges. In a functional 220 

dataset, ‘nodes’ represent brain regions and ‘edges’ represent the strength of functional coupling 221 

between those regions (10; 68). Examining the temporal nature of cross-correlations in the 222 

BOLD signal between nodes allows us to index the intrinsic functional architecture of the brain 223 

(68).   224 
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To capture changes in overall network connectivity we derived estimates of global 225 

efficiency (to assess network integration or distributed processing) and local efficiency (to assess 226 

network segregation or more regional processing specificity). Global efficiency is the average 227 

inverse shortest path length in the network (53). In other words, it is derived by examining the 228 

connectivity between each node and every other node and averaging the inverse of this measure 229 

for all nodes in the network. Global efficiency was calculated using the Brain Connectivity 230 

Toolbox (68; 69) and is represented in equation form below:  231 

 232 

where dij is the shortest path (smallest number of edges) between nodes I and j (21).  233 

 Local efficiency is a measure of functional segregation. Unlike global efficiency, local 234 

efficiency measures only the edges connecting direct neighbor nodes and thus quantifies the 235 

average efficiency of local subgraphs (53). A network with high local efficiency then describes a 236 

topological organization with notable segregated neural processing, which is believed to underlie 237 

functional specialization (68). Local efficiency was also calculated in the Brain Connectivity 238 

Toolbox and is represented here:  239 

 240 

 where NGi is the number of nodes in the subgraph Gi. Local efficiencies for each node can 241 

be averaged over all nodes to estimate the mean local efficiency of the graph. 242 

1.4.   Statistical analyses 243 

Statistical analyses were conducted in R (version 3.3.2) using the rstanarm package and 244 

default settings (77).  This software was used to fit two linear Bayesian models using the Markov 245 
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Chain Monte Carlo algorithm to the data evaluating the impact of CRF of brain network metrics 246 

(global and local efficiency were fit separately) for males and females.   247 

For each model, the outcome variable of interest was the network connectivity metric 248 

(either local or global efficiency), and the predictors were CRF, sex, and the interaction between 249 

CRF and sex. Age and education were included as covariates of no interest. Log10 250 

transformations were used to correct variables that did not meet the assumptions for normality 251 

prior to analysis. Evidence for the role of sex was assessed using posterior distributions from 252 

each model along with 95% credible intervals and posterior probabilities. This information 253 

allows us to determine whether or not we can reasonably expect to exclude a null finding from 254 

our data (i.e., if the 95% credible interval includes 0, we cannot preclude the possibility of no 255 

difference).  More useful however is that posterior distributions can determine exact probabilities 256 

for the effect of interest (e.g., "there was an 85% chance that the effect was greater than 0").  257 

Such information is useful as it helps to quantify the degree of uncertainty in the data. 258 

  259 

2. Results 260 

2.1.  Behavior 261 

A summary of the demographic and behavioral data can be found in Table 1. We report 262 

Bayesian estimates of the posterior difference between groups (i.e. a Bayesian t-test) along with 263 

95% credible highest density intervals (HDI). Posterior credible intervals excluded zero for only 264 

one estimate.  First, males had higher CRF levels than females (mu difference -2.97, 95% HDI: -265 

3.77, -2.15), corresponding to an effect size of d = -2.2. There were no sex differences in self-266 

reported physical activity levels, education levels, or intelligence quotient (credible intervals 267 

included 0, and all effect sizes < ± .45). Descriptive statistics for network efficiencies are 268 
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available in Table 2. Males and females did not reliably differ on any of these network metrics 269 

(all 95% HDI include 0).   270 

CRF and Network Connectivity 271 

Global efficiency and local efficiency were computed for nodes within the three networks 272 

of interest (the default, frontoparietal control, and cingulo-opercular networks). Age and 273 

education were included as covariates in all graph theory analyses.  274 

2.2.1. Local efficiency  275 

As described earlier, we first ran a Bayesian linear model predicting local efficiency with 276 

sex as the between-groups variable, CRF as a continuous predictor variable, and age and 277 

education as controls (see Figure 2).  The main effect of CRF was not reliably different from 278 

zero, b = 0.004, 95% HDI (-0.002, 0.010), nor was the main effect of sex, b = -0.04, 95% HDI (-279 

0.11, 0.03) – though in this case there was an 88% posterior probability that women had higher 280 

local efficiency values than men (see Figure 2B).  The interaction between sex and CRF (i.e. the 281 

difference of slopes) did not reliably differ by sex, b = 0.003, 95% HDI (-0.005, 0.01), though 282 

again, posterior probabilities suggest that males are 76% more likely than females to have a 283 

stronger positive relationship between CRF and local efficiency.    284 

 285 

[INSERT FIGURE 2 HERE] 286 

 287 

As posterior values for each group were included as part of the specification for the 288 

original model, these distributions could be extracted and examined separately without the need 289 

for post-hoc tests.  The median posterior slope value for males was 0.007, with a 95% HDI that 290 

excluded 0, (0.0003, 0.014), indeed, posterior probabilities suggest a 97% likelihood that the 291 
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slope value for males is greater than 0, and the posterior R2 value for this group was 0.34.  The 292 

median posterior slope value for females was lower, 0.004, and had a 95% HDI which included 293 

0, (-0.002, 0.011).  For females, the posterior probability that their slope is greater than zero is 294 

90%, and the posterior R2 value for this group was 0.21. The posterior probability distributions 295 

suggest that there is a 75% probability that males had steeper slope values than females 296 

indicating that CRF has a similar positive effect on local efficiency across networks for both 297 

sexes, but that this association is more robust in males than in females. Critically, the relationship 298 

across the groups is weaker than the relationships observed within groups, resulting in a failure 299 

to observe a reliable relationship between CRF and local network efficiency across the full 300 

sample (Figure 3). 301 

 302 

[INSERT FIGURE 3 HERE] 303 

 304 

2.2.2. Global efficiency  305 

Next, we ran a similar Bayesian linear model predicting global efficiency.  The model 306 

was defined as above, but with global efficiency as the outcome.  As with local efficiency, the 307 

main effect of CRF was not reliably different from 0, b = -0.002, HDI (-0.006, 0.001).  There 308 

was a marginal main effect of sex, b = 0.031, 95% HDI (-0.007, 0.07). This was associated with 309 

a 94% likelihood that males have higher global efficiency values than females (see Figure 4).  310 

The interaction between CRF and sex again was marginally reliable, b = -0.003, 95% HDI (-311 

0.008, 0.002), however the posterior probability that males had a steeper negative slope than 312 

females was 90%. Given the posterior probability values, we again examined the posterior slope 313 

distributions separately by sex.  Males had a median posterior slope value of b = -0.005 with a 314 
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95% HDI of (-0.0092, -0.00094) and a posterior R2 value of 0.35 suggesting that for this group, 315 

the slope was reliably different from zero.  By contrast, females had a median posterior slope 316 

value of b = -0.002 with a 95% HDI of (-0.006, 0.001), and a posterior R2 value of 0.27 317 

suggesting a weaker, non-reliable relationship for this group. 318 

3. Discussion 319 

CRF is frequently cited as a modifiable lifestyle factor that is associated with brain health in 320 

older adulthood (11; 42; 81; 83). This study investigated the relationship between CRF and 321 

RSFC, and how these associations differ for males and females. Across the default, frontoparietal 322 

control, and cingulo-opercular networks, CRF levels were positively associated with local 323 

network efficiency, a measure of regional connectedness, and negatively associated with global 324 

efficiency, a measure of overall network integration. However, these associations were less 325 

reliable across the entire participant sample (Figure 3). These findings reflect the Simpson’s 326 

paradox (35), wherein associations within groups are lost when combined into a single sample. 327 

This result speaks directly to the importance of considering sex in research examining 328 

relationships between exercise and brain function. Analyses by sex revealed a positive 329 

relationship between CRF and local network efficiency and a negative relationship with global 330 

efficiency, but these associations were only reliably observed for males. Females showed a 331 

similar overall pattern, positive associations between CRF and local efficiency and negative 332 

associations with global efficiency, however, the associations were weaker and were not reliably 333 

different from 0. The results show that physical fitness is related to functional connectivity of the 334 

brain in older adults during the resting state, however, these associations are sex-specific.  335 

 Older adults who are more physically fit have greater local efficiency among functionally 336 

connected brain regions and show stronger connections within discrete brain networks (84). This 337 
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trend towards greater local efficiency in fit older adults contrasts with typical age-related shifts 338 

from local to more global efficiency, signaling increasingly dedifferentiated network connections 339 

with age (13; 20; 30; 40; 61; 76). In this context, the findings of the current study and others (e.g. 340 

44) suggest that remaining physically fit may help to sustain a ‘younger’ network architecture 341 

into later life. Further, these associations may be neuroprotective as greater local processing has 342 

been associated with better executive functioning (3; 44) in older adults and is positively 343 

predictive of cognitive gains following both cognitive training (2; 29) and exercise interventions 344 

(3).  345 

Our findings of an association between CRF and increased local efficiency differ from 346 

that of a recent report by Kawagoe and colleagues (48). In their study, lower local efficiency, and 347 

greater global efficiency was observed for more fit older adults. This efficiency pattern was also 348 

associated with better cognitive functioning which the authors interpreted as a fitness-related 349 

pattern of compensatory network changes. While they did not stratify their sample by sex, 350 

potentially masking the sex-differences we report here, other methodological differences may 351 

have contributed to these divergent findings. We examined network efficiencies within and 352 

among three a priori identified associative networks with a denser array of functionally defined 353 

nodes in contrast to a whole brain, structurally-defined node array (48). These differences in 354 

network identification may have enhanced our capacity to identify network- specific associations 355 

between RSFC and fitness levels. Further, unlike a network compensation account (48), our 356 

findings are consistent with studies suggesting that decreased local, or segregated, network 357 

organization and increased global, or dedifferentiated, networks are associated with age-related 358 

decline (20; 39; 75). However, given the correlational nature of the study, further work will be 359 

necessary to determine the causal impact of CRF in later life. Specifically, it will be important to 360 
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investigate whether CRF promotes a more ‘young-like’ functional architecture or a 361 

compensatory pattern of dedifferentiated network connectivity. Further, while the focus of this 362 

study was to elucidate sex differences in the impact of CRF on brain function specifically, the 363 

role of network efficiency as a mediator between CRF and cognitive functioning is an important 364 

future direction. 365 

Future research will also be necessary to more fully elucidate sex differences in the 366 

relationship between CRF and brain function. As we observed here, sex-dependent associations 367 

exist between CRF and RSFC in brain networks most susceptible to change with age and fitness 368 

levels. It is well established that brain structure and function are sexually dimorphic (1; 18; 33; 369 

34; 57; 79). These sex differences persist into older age and have been observed during the 370 

resting state. In this context, sex differences might also be expected in the relationship between 371 

RSFC and CRF in later life. Our findings suggest that this is indeed the case. Males, but not 372 

females, showed reliable and robust associations between CRF and measures of network 373 

connectivity in older adults. This sex difference is consistent with reports of sex-dependent 374 

associations, favoring males, in the relationship between fitness levels and peripheral physical 375 

and central nervous system function in older adults ( 66; 67; 72, and see 28; 62 for reviews). 376 

However, to our knowledge, these sex differences have not previously been investigated at the 377 

level of large-scale cortical networks.    378 

An obvious next question is why this CRF and RSFC association was only reliable for 379 

males in our sample. We hypothesized effects favoring females given research demonstrating 380 

stronger associations between fitness and cognition in females (4). However, it is important to 381 

reiterate that previous studies have not examined sex differences in the impact of fitness at the 382 

level of brain function (but at the level of overt cognition). Thus, we are the first to investigate 383 
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(and interpret) sex differences in this domain. Based on our results, we suggest that the stronger 384 

association observed in males is the result of a more rapid shift towards global efficiency among 385 

these associative brain networks in males versus females. Age-related declines in brain structure 386 

and function are known to occur more rapidly in males, particularly among association regions 387 

and related brain networks which were the focus of the current study (63; 89). Consistent with 388 

this interpretation we observed tendencies for lower measures of local efficiency (88% 389 

likelihood) and greater global efficiency (94% likelihood) in males versus females in our sample. 390 

Sex-differences in the trajectory of age-related changes, with males showing a more rapid shift 391 

towards less localized network organization, suggest that lifestyle factors such as physical fitness 392 

levels may have a relatively greater impact on the preservation of more differentiated brain 393 

networks in older males. While much research has investigated age and sex as factors in network 394 

neuroscience research, these have rarely been investigated within a single study (71).  The 395 

current findings argue for careful consideration of sex as a factor in future research investigating 396 

the determinants and implications of changes in the organization of functional brain networks in 397 

older adulthood.  398 

Notably, we did not see sex differences in reported physical activity level in this study, 399 

providing greater evidence that the differences seen between sexes are attributable to 400 

physiological attributes associated with CRF (i.e. the sum of other components of the CRF 401 

equation including resting heart rate and body mass index) as opposed to systematic differences 402 

in physical activity reporting (which are known to occur between the sexes; 49).  It should also 403 

be noted that we cannot exclude the possibility of a sex-specific reporting bias in our CRF 404 

metric. The formula utilizes self reported height and weight information to calculate BMI. While 405 

the information was gathered as part of the MRI safety protocol, where it would be in the 406 
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participant’s interest to provide an accurate report, a sex-dependent bias in reporting these 407 

measures is possible (36). 408 

Further, while our total sample size is generally consistent with similar studies, individual 409 

difference studies typically require large cohorts. To help mitigate this limitation, the 410 

neuroimaging methods employed in the study (e.g. the use of ME-ICA) served to ensure stronger 411 

signal-to-noise ratio for obtained neuroimaging data (i.e. a four-fold increase in SNR). Further, 412 

our use of Bayesian statistics served to minimize the influence of statistical outliers and enabled 413 

us to report probabilities (and thereby quantify uncertainties) in the data. 414 

 While our findings identified sex-differences in the association between fitness level and 415 

brain function in older adulthood, further research will be necessary to reconcile these findings 416 

with previous cognitive neuroscience investigations (48) as well as neurocognitive studies 417 

identifying stronger associations between CRF and cognitive functioning in females (4). 418 

Unfortunately, myriad methodological differences often preclude direct comparisons among 419 

studies in the field. Perhaps the most limiting of these involves discrepancies in the measurement 420 

of physical fitness. Differences include the use of self-report versus objective measures (70), as 421 

well as the operationalization of physical activity and physical fitness (54; 84). Further, 422 

investigating sex-differences in this functional domain is complicated by other sex-based 423 

differences such as the impact of hormonal replacement therapy (16; 17; 23). While these 424 

challenges are endemic to the field, our findings that CRF is associated with brain function in a 425 

sex-dependent manner underscores the importance of considering sex as a factor when studying 426 

associations between exercise and brain health in older adulthood. Rapid increases in the 427 

popularity of exercise as an intervention to promote brain health in later life presents an urgent 428 

Downloaded from www.physiology.org/journal/jappl (080.028.157.025) on March 28, 2019.



 18

need to overcome these methodological challenges, towards the goal of building a coherent body 429 

of research to inform evidence-based public health initiatives.    430 

  431 
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Tables 711 
 712 

Table 1. Descriptive Statistics 713 
Variable Female 

Mean 
Female 
SD 

Male 
Mean 

Male 
SD 

mu 
difference 

sd 
difference 

HDI 
lower 

HDI 
upper 

CRF 6.09 0.27 9.06 0.31 -2.97 0.41 -3.77 -2.15 
PA 8.43 0.17 8.73 0.21 -0.30 0.27 -0.83 0.22 
Education 16.86 0.49 17.29 0.78 -0.43 0.93 -2.21 1.42 
Age 66.28 0.94 68.37 1.52 -2.08 1.79 -5.57 1.44 
MMSE 28.05 0.28 28.18 0.36 -0.13 0.46 -1.02 0.76 

 714 
Difference scores and Highest Density Intervals (HDI) refer to Bayesian posterior density 715 
estimates of the difference between groups. CRF = cardiorespiratory fitness, PA = physical 716 
activity, MMSE = Mini-Mental Status Exam.  717 
 718 
 719 
Table 2. Global and local efficiency across networks  720 

Variable Female 
Mean 

Female 
SD 

Male 
Mean Male SD mu 

difference 
sd 

difference  
HDI 
lower 

HDI 
upper 

LE All 0.750 0.005 0.749 0.006 0.001 0.008 -0.013 0.017 
FPCN LE 0.693 0.013 0.718 0.019 -0.025 0.023 -0.071 0.020 
DN LE 0.711 0.008 0.721 0.006 -0.010 0.010 -0.030 0.008 
CO LE 0.693 0.008 0.708 0.012 -0.015 0.014 -0.042 0.014 
GE All 0.533 0.003 0.531 0.004 0.002 0.005 -0.007 0.011 
FPCN GE 0.425 0.007 0.404 0.009 0.022 0.012 -0.001 0.045 
DN GE 0.477 0.007 0.470 0.006 0.007 0.009 -0.011 0.025 
CO GE 0.477 0.006 0.479 0.007 -0.003 0.009 -0.020 0.016 

 721 
Global and local network statistics are presented by group within and across the networks of 722 
interest.  Difference scores and Highest Density Intervals (HDI) refer to Bayesian posterior 723 
density estimates of the difference between groups. LE = local efficiency, GE = global 724 
efficiency, LE All = local efficiency for all networks, GE All = global efficiency for all 725 
networks. FPCN = fronto-parietal control network, DN = default   network, CO = cingulo-726 
opercular network 727 
 728 

  729 
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Figure Captions 730 
 731 
Figure 1. Visualization of our networks of interest. Regions of Interest for the default, cingulo-732 
opercular and frontoparietal control networks were taken from a resting state parcellation by 733 
Gordon and colleagues (38) and are represented as spheres. For illustrative purposes, regions of 734 
interest were superimposed on an overlay (86) to validate functional network assignment. Figure 735 
was created using Connectome Workbench (59). 736 
 737 
Figure 2. Bayesian linear model of the relationship between CRF and local efficiency by gender. 738 
Figure 2a illustrates the linear relationship between CRF and local efficiency by group (shaded 739 
regions represent standard errors).  Figure 2b show posterior distributions of intercepts for each 740 
group (F, M). The numbers appended to the plot are the median posterior density values.  The 741 
posterior difference between the group intercepts can be seen in Figure 2c along with a 95% 742 
credible interval and posterior probabilities (i.e. there is an 88% probability that women have 743 
higher local efficiency values than men). Figures 2d plots the posterior distributions for the 744 
model slopes by group and figure 2d plots the posterior difference as described above for the 745 
intercepts.   746 
 747 
Figure 3. Illustration of the relationship between CRF and network efficiencies demonstrating 748 
Simpson’s paradox. Figure 3a illustrates the relationship between CRF and local efficiency 749 
which, when combined across genders, is not reliably different from zero (shaded regions 750 
represent standard errors). Figure 3b shows the same relationship between CRF and local 751 
efficiency which, when stratified, is reliably different from zero in males. Figures 3c and 3d 752 
demonstrate the same effect as applied to global efficiency.  753 
 754 
Figure 4. Bayesian linear model of the relationship between CRF and global efficiency by 755 
gender. Figure 4a illustrates the linear relationship between CRF and global efficiency by group 756 
(shaded regions represent standard errors).  Figure 4b show posterior distributions of intercepts 757 
for each group (F, M). The numbers appended to the plot are the median posterior density values.  758 
The posterior difference between the group intercepts can be seen in Figure 4c along with a 95% 759 
credible interval and posterior probabilities (i.e. there is a 94% probability that men have higher 760 
global efficiency values than women). Figures 4d plots the posterior distributions for the model 761 
slopes by group and figure 4d plots the posterior difference as described above for the intercepts.   762 
 763 
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