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Abstract

INTRODUCTION: Sedentary behavior may be a modifiable risk factor for Alzheimer’s

disease (AD). We examined how sedentary behavior relates to longitudinal brain

structure and cognitive changes in older adults.

METHODS: Vanderbilt Memory and Aging Project participants (n = 404) completed

actigraphy (7 days), neuropsychological assessment, and 3T brain MRI over a 7-year

period. Cross-sectional and longitudinal linear regressions examined sedentary time
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in relation to brain structure and cognition. Models were repeated testing for effect

modification by apolipoprotein E (APOE) ε4 status.
RESULTS: In cross-sectional models, greater sedentary time related to a smaller AD-

neuroimaging signature (β= -0.0001, p=0.01) andworse episodicmemory (β= -0.001,

p = 0.003). Associations differed by APOE-ε4 status. In longitudinal models, greater

sedentary time related to faster hippocampal volume reductions (β = -0.1, p = 0.008)

and declines in naming (β= -0.001, p=0.03) and processing speed (β= -0.003, p=0.02;

β= 0.01, p= 0.01).

DISCUSSION:Results support the importance of reducing sedentary time, particularly

among aging adults at genetic risk for AD.
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Highlights

∙ Greater sedentary behavior is related to neurodegeneration andworse cognition.

∙ Associations differed by APOE-ε4 carrier status in cross-sectional models.

∙ Sedentary behavior is an independent risk factor for Alzheimer’s disease.

1 BACKGROUND

Sedentary behavior is gaining attention as an importantmodifiable risk

factor in aging. More time spent sitting is associated with increased

risk of chronic diseases, such as type2diabetes, cardiovascular disease,

and cancer.1 Importantly, recent studies suggest increased sedentary

time may also be associated with cognitive decline and Alzheimer’s

disease (AD).2 Reducing sedentary behavior time may hold promise

as an effective strategy to prevent neurodegeneration. The mech-

anisms underlying the detrimental effects of sedentary behavior in

older adulthood are not fully understood. Prolonged sedentary time is

thought to contribute to cerebral and systemic vascular dysfunction,3

increases in inflammation,4 and reduction in synaptic plasticity.5 In

animal models, rodents that were assigned to small cages to model

a sedentary lifestyle showed higher biomarkers of oxidative stress

than those who had access to a running wheel.6 Given the association

between sedentary behavior and vascular dysfunction,7 the negative

impact of sedentary behavior may be especially critical for carriers

of the apolipoprotein E (APOE)-ε4 allele, a well-established genetic

susceptibility risk factor for AD8 andmodulator of vascular damage.9

Regular physical activity is a well-known lifestyle strategy to main-

tain brain health.10 Physical activity positively impacts brain structure,

function, and cognition in older adulthood purportedly through the

upregulation of neurotrophic factors11 and synaptogenesis.12 Physical

activity intervention trials show promise for the reduction of neurode-

generation, particularly among individuals at risk for AD.13 However,

while physical activity attenuates detrimental effects of sedentary

behavior, it does not completely eliminate the harmful risks associ-

atedwith increased sitting time.14 Considering the average older adult

spends over 9 h sedentary during the day,15 it is important to under-

stand the impact of sedentary behavior on neurodegeneration and

cognition in older adults, independent of physical activity.16 Studies

show older adults who engage in more sedentary behavior have worse

executive function,17 memory,18 and neurodegeneration, particularly

within the medial temporal lobe19 and white matter.20 In addition, a

study showed that longer sedentary time measured via questionnaire

was associated with higher risk of mild cognitive impairment (MCI),

particularly inAPOE-ε4 non-carriers, over amedian 3-year period.21 By

contrast, a recent study did not find an association between sedentary

behavior and global cognitive impairment at baseline or an association

between sedentary behavior and cognitive decline over a 4 year period

across several population cohorts.22 In addition, few studies exam-

ine the independent contribution of sedentary behavior by adjusting

models for other types of physical activity. These mixed results may

be because prior studies vary in defining and measuring sedentary

behavior (oftentimes relying upon self-report).2,23 This heterogeneity

emphasizes the need for further exploration of objectively measured

sedentary behavior with comprehensive neuropsychological testing

and structural brain magnetic resonance imaging (MRI), especially in a

longitudinal context.

Leveraging objective measures of sedentary behavior, this study

examines cross-sectional and longitudinal associations of sedentary

time with cognition and structural brain changes using comprehensive

neuropsychological testing in a cohort of older adults without demen-

tia at studyentry tounderstand risk forAlzheimer’s diseaseand related

dementias (AD). We hypothesize that, after adjustment for daily phys-

ical activity to understand the independent contribution of sedentary

behavior, more sedentary time at study entry will be associated with

greater neurodegeneration, particularly in brain regions susceptible

to AD pathology, such as the temporal and parietal lobes.24 We also
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hypothesize that greater sedentary time at study entry will be associ-

ated with worse cognition, particularly in domains impacted by AD in

the temporal lobes (i.e., memory and language), and the observed asso-

ciations will be stronger for individuals genetically predisposed to AD

(APOE-ε4 carriers vs. non carriers).

2 METHODS

2.1 Study cohort

Participantsweredrawn from the Legacy andExpansionCohorts of the

Vanderbilt Memory and Aging Project (VMAP), a longitudinal obser-

vational study of older adults without dementia at study entry.25

Inclusion criteria for the Legacy Cohort required participants to be at

least 60 years oldwith adequate auditory and visual acuity, proficiency

in English, and a reliable study partner. Participants were enrolled if

theywere cognitively unimpaired ormet existing criteria for earlyMCI

(eMCI)26 or MCI.27 Inclusion criteria for the Expansion Cohort were

identical except that participants had to be at least 50 years old and

be cognitively unimpaired. Participants in both cohorts were excluded

forMRI contraindication, a history of other neurological disorders (e.g.,

stroke, dementia, loss of consciousness greater than 5min), major psy-

chiatric illness, heart failure, or terminal illness. The present study

leveraged actigraphy, neuroimaging, and neuropsychological data col-

lected from discrete participants when actigraphy monitors were

introduced in the Legacy Cohort at 18-month (2014–2016) and 3-year

(2015–2018) visits. These participantswere followed serially at 5-year

(2017–2019), 7-year (2019–2021), 9-year (2021–2023), and 11-year

(2023-ongoing) intervals. ExpansionCohort participantswere asked to

wear actigraphy monitors starting at study entry (2021-ongoing) and

follow-up visits, including 18-month follow-up (2022-ongoing). Partic-

ipants were excluded from the present study for missing covariates,

actigraphy, MRI, or neuropsychological data at baseline. Of a possible

440 participants, 1 participant was excluded for missing neuroimag-

ing data, and 35 participants were excluded for missing covariate data.

Participants were included in longitudinal analyses if they had predic-

tor and outcome data from baseline and at least one follow-up visit

(n = 244). There were n = 160 participants with only one visit. This

protocol was approved by the Institutional Review Board at Vander-

biltUniversityMedicalCenter.Written informedconsentwasobtained

from each participant prior to data collection. Due to participant con-

sent restrictions in data sharing, a subset of data is available to others

for purposes of reproducing the results or replicating procedures.

These data, analytic methods, and study materials can be obtained by

contacting the corresponding author.

2.2 Actigraphy measures

Participants were asked to wear a triaxial accelerometer (ActiGraph

GT9X Link, Actigraph, Pensacola, USA) on their non-dominant wrist 24

h per day for 10 consecutive days. The device measured acceleration

RESEARCH INCONTEXT

1. Systematic review: Recent studies suggest that increased

sedentary time may be associated with cognitive decline

andAlzheimer’s disease (AD). Reducing sedentary behav-

ior time may hold promise as an effective strategy to

prevent neurodegeneration; however, the neurobiolog-

ical mechanisms underlying the detrimental effects of

sedentary behavior in older adulthood are not fully

understood.

2. Interpretations: In cross-sectional models, greater

sedentary time related to cortical thinning in regions

affected by AD and worse episodic memory perfor-

mance. In longitudinal models, greater sedentary

time also related to smaller hippocampal volume,

worse naming, and processing speed. Associations dif-

fered by apolipoprotein E (APOE) -ε4 carrier status in

cross-sectional models, driven by APOE-ε4 carriers.
3. Future directions: More sedentary time related to neu-

rodegeneration and worse cognition cross-sectionally

and longitudinally after adjustment for established AD

risk and resilience factors. Results demonstrate the

importance of reducing sedentary time regardless of

physical activity level, particularly among aging adults at

genetic risk for AD.

in three axes at a 30 Hz sampling rate. Raw data were downloaded and

exported using ActiLife software (version 6.12.1, Actigraph, Pensacola,

USA) and processed in R software using the GGIR package (version

2.4-0, https://cran.r-project.org/web/packages/GGIR/).28 GGIR auto-

calibrated the data according to local gravity (g units; 1 g= 9.82m/s2; 1

mg=0.00981m/s2), censored abnormally high accelerations, and iden-

tified non-wear time following previously validated algorithms.29–31

Accelerations related to movement were then quantified over 5-s

epochs using theEuclidianNormMinusOne (ENMO = √(x 2 + y2 + z2)

– 1 g), with negative values truncated to zero. Final values were

expressed inmg.

Assessments of sedentary behavior for older adults require higher

thresholds compared to younger individuals,32 so published thresholds

forwrist actigraphy variables in community-dwelling older adultswere

calculated as follows: (1) sedentary behavior ≤49 mg, (2) light phys-

ical activity (LPA) 50–99 mg, and (3) moderate-to-vigorous physical

activity (MVPA) ≥100 mg.33–35 Sleep periods were detected by GGIR

and excluded from quantifications of sedentary behavior and physical

activity.36,37

Excluding the first day of devicewear, data from the next 7 consecu-

tive days of wearwere analyzed. A validwear daywas defined as≥10 h

of wear time.38 Participants with fewer than 4 valid days of data were

excluded.39 Averageminutes per day spent in sedentary behavior, LPA,

andMVPAwere calculated for each participant.
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2.3 Multi-modal 3T brain MRI and DNA
genotyping

Participants underwent a brain MRI at each time point. Between 2014

and2017, participantswere scanned at theVanderbilt University Insti-

tute of Imaging Science on a 3T Philips Achieva system (Best, the

Netherlands) with an eight-channel phased-array SENSE receiver head

coil. In 2017, the system was upgraded to a 32-channel dStream head

coil. In the VMAP Legacy Cohort, T1-weighted MPRAGE images were

acquired using the following parameters: TR = 8.9 ms, TE = 4.6 ms,

and spatial resolution = 1 × 1 × 1 mm3. In the Expansion Cohort

and VMAP Legacy Cohort from 9-year follow-up and onward, T1-

weighted MPRAGE images were acquired using the following param-

eters: TR = 6.5 ms, TE = 2.9ms, and spatial resolution = 1 × 1 × 1

mm3.

T1 images were post-processed with an established Multi-Atlas

Segmentation pipeline, which calculates a consensus segmenta-

tion through fusion of anatomical labels from multiple atlases and

registrations.40,41 Regions of interest included gray matter volumes

(whole brain, frontal, temporal, parietal, and occipital lobes, hippocam-

pus). Individual gray matter, white matter, and cerebrospinal fluid

volumes from T1-weighted images were used to calculate intracra-

nial volume (ICV). T1-weighted imageswere separately post-processed

using FreeSurfer version 7.3.2 (http://surfer.nmr.mgh.harvard.edu/) to

obtain cortical thickness values. An AD-signature was calculated at

baseline and each follow-up timepoint using FreeSurfer by summing

bilateral cortical thickness measurements from regions of interest

(including the entorhinal cortex, middle temporal cortex, inferior pari-

etal cortex, fusiform gyrus, and precuneus) previously identified as

susceptible to AD neurodegeneration.42,43

BecauseT1-weighted image sequenceparameters differedbetween

the VMAP Legacy and Expansion Cohorts, we used longitudinal

ComBat44 to harmonize T1-weighted image outputs from each seg-

mentation pipeline across both cohorts. Longitudinal ComBat inputs

include the features to be harmonized, the specification of batch vari-

ables, and the specification of a linear mixed-effects model. Input

features included cortical thickness variables from Desikan-Killiany-

Tourville atlas regions. Sessions were treated as independent at each

timepoint.

APOE genotyping was performed on blood samples using a TaqMan

single-nucleotide polymorphism (SNP) genotyping assay from Applied

Biosystems (Foster City, California, USA). Polymerase chain reaction

(PCR) was completed on Life Technologies 7900HT real-time PCR

machine and analysis was completed using Life Technologies SDS 2.4.1

software.

2.4 Neuropsychological assessment

Participants completed a comprehensive neuropsychological protocol

at each time point assessing information processing speed, language,

executive function, visuospatial ability, and episodicmemory. Executive

function and episodic memory composites were created using a bifac-

tor latent variable model as previously described.45 See Table 1 for a

complete list of measures.

2.5 Analytical plan

Linear regressions with ordinary least square estimates related aver-

age sedentary time individually to cross-sectional graymatter volumes,

AD imaging signature, and neuropsychological performance (one test

per model). Models were adjusted for age, sex, race/ethnicity, educa-

tion (years), APOE-ε4 carrier status (positive, negative), Framingham

Stroke Risk Profile (FSRP46; excluding points assigned for age), Clinical

Dementia Rating (CDR) global score (0, ≥0.5) to account for cognitive

status, and (as appropriate) ICV for neuroimaging outcomes. Models

were repeated with the addition of MVPA as a covariate to assess the

independent contribution of sedentary behavior to outcomes.

To examine associations longitudinally, linear mixed-effects regres-

sion models related baseline sedentary behavior to longitudinal neu-

rodegeneration (gray matter volumes, AD imaging signature) and

neuropsychological performance (one test permodel). Identical covari-

ates were utilized, including an interaction with time to follow-up time

(in years) as the termof interest. Random intercepts and randomslopes

for participants were included with first-order autoregressive covari-

ance structure to account for within participant correlations and allow

participant specific trajectories.

To test for effect modification by APOE-ε4 status, models were

repeated with a sedentary time x APOE-ε4 status interaction term in

cross-sectional analysis and sedentary time x APOE-ε4 status x follow-

up time interaction term in longitudinal analysis. All models were

then stratified by APOE-ε4 status. Sensitivity analyses were performed

excluding outliers in outcome variables (values> 4 standard deviations

from themean).

For additional conservative adjustment, the Benjamini-Hochberg

procedure47 was applied per hypothesis to control for false discovery

rate (FDR) for multiple comparisons, and post-hoc significance was set

at p < 0.05. Statistical analyses were conducted using R 4.2.2 (https://

www.r-project.org). The following R packages were used for analy-

ses and data visualization: dplyr (1.1.4) broom (1.0.7), Hmisc (5.2-0),

ggplot2 (3.5.1), MuMIn (1.48.4), nlme (3.1-166), and rms (6.8-2).

3 RESULTS

3.1 Participant characteristics

Participants included 404 older adults (71 ± 9 years old, 16 ± 3 years

of education, 54% male, 85% White, non-Hispanic). Most participants

(79%) were cognitively unimpaired (CDR = 0) at the time of actig-

raphy assessment baseline. One-third of participants were APOE-ε4
positive (n= 131). Most participants met the Centers for Disease Con-

trol and Prevention (CDC) recommended guidelines of at least 150min

of MVPA per week (87%), with an average MVPA time of 61 ± 38 min

per day. MVPA was strongly and inversely correlated with sedentary
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TABLE 1 Baseline participant characteristics.

Parameter

Total

n= 404

APOE-ε4Non-carriers
n= 273

APOE-ε4 Carrier
n= 131 p-value

Demographic and health characteristics

Age, years 71± 8.2 72± 8.6 70± 7.4 0.10

Sex, %male 54 54 55 0.83

Race, % non-HispanicWhite 85 85 85 0.89

Education, years 16± 2.4 16± 2.4 16± 2.3 0.36

Framingham Stroke Risk Profile, totala 11.2± 4.9 11.1± 4.8 11.3± 5.0 0.94

Systolic blood pressure 135± 17 135± 16 135± 18 0.70

Antihypertensivemedication usage, % 50 49 51 0.75

Diabetes, % 16 13 23 0.01

Cigarette smoking, % current 1 2 1 0.41

Prevalent CVD, % 5 4 8 0.18

Atrial fibrillation, % 6 6 5 0.83

Left ventricular hypertrophy, % 8 6 13 0.01

CDR, % 0 78 81 74 0.13

Average sedentary time, minutes/day 807± 97 806± 98 809± 96 0.94

AverageMVPA time, minutes/day 61± 38 61± 40 60± 36 0.79

MVPA, %≥150min 87 87 88 0.78

Sleep duration, minutes/day 447± 81 449± 73 442± 75 0.44

Intracranial volume, mm3 1495560± 147238 1489286± 148630 1508207± 144141 0.23

BrainMRI outcomes

Total graymatter volume, mm3 651336± 76297 649125± 77667 655777± 73568 0.43

Frontal lobe volume, mm3 210642± 30213 209685± 30689 212564± 29258 0.35

Temporal lobe volume, mm3 128921± 15417 128472± 15314 129823± 15643 0.54

Parietal lobe volume, mm3 121650± 15350 121196± 15750 122565± 14527 0.30

Occipital lobe volume, mm3 88400± 11075 88067± 11467 89071± 10250 0.58

Hippocampus volume, mm3 7171± 801 7182± 784 7148± 837 0.74

AD-neuroimaging signature, mm 2.5± 0.2 2.5± 0.2 2.5± 0.2 0.73

Neuropsychological outcomes

BostonNaming Test, total 27.5± 2.6 27.7± 2.5 27.3± 2.7 0.06

Animal naming, total 21.1± 5.8 21.3± 5.7 20.9± 6.0 0.50

WAIS-IV coding, total 56.0± 14 56.0± 14 55.0± 14 0.82

D-KEFS number sequencing, seconds 38.0± 21 37.0± 16 40.0± 21 0.16

Executive function composite 0.3± 0.7 0.3± 0.7 0.3± 0.8 0.89

Hooper Visual Organization Test, total 24.9± 2.7 25.0± 2.6 24.9± 2.8 0.70

Episodic memory composite 0.3± 0.9 0.4± 0.9 0.2± 0.9 0.11

Note: Values denoted asmean± SD or frequency. Values in bold denote p-value< 0.05. p-value reflects group differences.
Abbreviations: AD, Alzheimer’s disease; APOE-ε4, apolipoprotein E ε4 allele; CDR, Clinical Dementia Rating; CVD, cardiovascular disease; D-KEFS, Delis–

Kaplan Executive Function System; MRI, magnetic resonance imaging; MVPA, moderate to vigorous physical activity; WAIS-IV, Wechsler Adult Intelligence

Scale, fourth edition.
aA modified Framingham Stroke Risk Profile Score was included in statistical models, which excluded points assigned to age (APOE-ε4 carriers = 6.2 ± 3.9,

APOE-ε4 non-carrier= 5.6± 3.2).
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F IGURE 1 Sedentary time associations with AD-neuroimaging signature and episodicmemory. Plots include outliers. For the episodicmemory
composite, higher values reflect better performance. Greater sedentary timewas significantly associated with a smaller AD-neuroimaging
signature (β= -0.0001, p= 0.01) andworse episodic memory performance (β= -0.001, p= 0.003). Models for AD-neuroimaging signature and
episodic memory were attenuated when adjusting forMVPA. AD, Alzheimer’s disease; MVPA, moderate-to-vigorous physical activity.

behavior (r = -0.65, p < 0.0001). Average sedentary time was 807 min

per day (13 h). Average follow-up time was 4.7 ± 2 years. Over the

course of the study, only 27 of the total participants with at least two

timepoints converted to dementia. See Table 1 for additional details.

3.2 Sedentary behavior and brain MRI outcomes

Greater sedentary timewas cross-sectionally associatedwith a smaller

AD-neuroimaging signature (β = -0.0001, p = 0.01). See Figure 1. This

association remained statistically significant when excluding outliers

(p-value = 0.01) but not when adjusting for MVPA (p-value = 0.07).

No other cross-sectional associations were statistically significant

(p-values>0.12). SeeTable 2 for details andTable S1 for FDRcorrected

models.

The cross-sectional sedentary time x APOE-ε4 carrier status inter-

acted on total gray matter (β = -86.9, p = 0.02), frontal (β = -46.9,

p = 0.02), and parietal lobe volumes (β = -23.9, p = 0.02). These inter-

actions all remained statistically significant when adjusting for MVPA

(p-values = 0.02) and excluding outliers (p-values < 0.03). See Table 2

and Figure 2 for details and Table S1 for FDR corrected models. In

stratifiedmodels, among APOE-ε4 carriers, greater sedentary timewas

cross-sectionally associated with lower total gray matter volume (β= -

75.8, p = 0.02), and smaller frontal (β = -38.0, p = 0.02) and parietal

lobe volumes (β = -18.5, p = 0.03). See Table S2 for details. All effects

remained statistically significant when adjusting for MVPA except for

total gray matter volume; all significant effects persisted when exclud-

ing outliers (p-values< 0.03). All stratifiedmodels in non-carriers were

not statistically significant (p-values> 0.10).

In longitudinal models, greater sedentary time was associated

with greater reduction in hippocampal volume over time (β = -0.1,

p = 0.008). See Table 3 and Figure 3. This model remained statistically

significant when adjusting for MVPA (p-value = 0.008) and excluding

outliers (p-value = 0.009); see Table S3 for FDR corrected models.

The sedentary time x APOE-ε4 carrier status interacted on occipi-

tal lobe volume annual change over time only (β = 2.0, p = 0.03).

This interaction remained statistically significant when adjusting for

MVPA (p-value = 0.03) and excluding outliers (p-values < 0.03). See

Table 3 and Figure S1. In stratified models, among APOE-ε4 non-

carriers, greater sedentary timewas associatedwith greater reduction

in occipital lobe volume over time (β = -1.1, p = 0.05). This effect

remained significant when adjusting for MVPA (p = 0.05) and when

excluding outliers (p = 0.05). All stratified models in APOE-ε4 carri-

ers were not statistically significant (p-values > 0.13). See Table S4 for

more details.

3.3 Sedentary behavior and neuropsychological
outcomes

Greater sedentary time was cross-sectionally associated with worse

episodic memory performance (β = -0.001, p = 0.003), and the

association remained statistically significant when excluding outliers

(p-value = 0.03) but not when adjusting for MVPA (p-value = 0.19).

See Table 2 and Figure 1 for details and Table S1 for FDR corrected

models.

The cross-sectional sedentary time x APOE-ε4 carrier status inter-

acted on the Boston Naming Test (β = -0.01, p = 0.01) and Hooper
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GOGNIAT ET AL. 7 of 13

TABLE 2 Sedentary time cross-sectional associations with brain health and cognition.

Parameter β Sedentary time 95%CI p-value
p-valuewith
MVPA

BrainMRI outcomes

Total graymatter volume −25.4 −63.1, 12.3 0.19 0.14

Frontal lobe volume −9.1 −28.7, 10.5 0.36 0.17

Temporal lobe volume −1.8 −10.5, 6.8 0.68 0.65

Parietal lobe volume −5.0 −14.9, 4.9 0.32 0.35

Occipital lobe volume −4.9 −11.1, 1.3 0.12 0.15

Hippocampus volume −0.2 −1.0, 0.5 0.52 0.97

AD-neuroimaging signature −0.0001 −0.0002,−0.00003 0.01 0.07

Neuropsychological outcomes

BostonNaming Test 0.0002 −0.002, 0.003 0.89 0.69

Animal naming −0.006 −0.01,−0.0005 0.03 0.37

WAIS-IV coding −0.001 −0.01, 0.01 0.93 0.38

D-KEFS number sequencinga −0.003 −0.02, 0.01 0.69 0.09

Executive function composite −0.0002 −0.001, 0.0004 0.47 0.43

Hooper Visual Organization Test −0.001 −0.004, 0.002 0.42 0.97

Episodic memory composite −0.001 −0.002, -0.0004 0.003 0.19

Sedentary time xAPOE-ε4 on brainMRI outcomes

Total graymatter volume −86.9 −160.9, -13.0 0.02 0.02

Frontal lobe volume −46.9 −85.3, -8.5 0.02 0.02

Temporal lobe volume −7.8 −24.9, 9.3 0.37 0.37

Parietal lobe volume −23.9 −43.4, -4.5 0.02 0.02

Occipital lobe volume 3.0 −9.3, 15.3 0.63 0.62

Hippocampus volume −0.6 −2.0, 0.9 0.44 0.43

AD-neuroimaging signature −0.0002 −0.0004, 0.00003 0.09 0.08

Sedentary time xAPOE-ε4 on neuropsychological outcomes

BostonNaming Test −0.01 −0.01, -0.001 0.01 0.01

Animal naming −0.003 −0.01, 0.007 0.55 0.52

WAIS-IV coding −0.003 −0.03, 0.02 0.83 0.80

D-KEFS number sequencinga 0.02 −0.02, 0.05 0.31 0.28

Executive function composite −0.001 −0.002, 0.0003 0.14 0.12

Hooper Visual Organization Test −0.007 −0.01, -0.001 0.01 0.01

Episodic memory composite −0.0002 −0.001, 0.001 0.77 0.73

Note: Values in bold denote p-value< 0.05.

Abbreviations: AD, Alzheimer’s disease; APOE-ε4, apolipoprotein E ε4; CI, confidence interval; D-KEFS, Delis-Kaplan Executive Function System; MRI,

magnetic resonance imaging;MVPA, moderate-to-vigorous activity;WAIS-IV,Wechsler Adult Intelligence Scale, fourth edition.
aHigher values reflect worse performance.

Visual Organization Test performance (β = -0.01, p = 0.01). See

Table 2 and Figure 2. These effects remained statistically significant

when adjusting for MVPA (p-values = 0.01) and excluding outliers

(p-values < 0.02). When these significant models were stratified by

APOE-ε4 status, sedentary time related to the Hooper Visual Organi-

zation Test in APOE-ε4 carriers only (β = -0.01, p = 0.03). This effect

remained statistically significant when excluding outliers (p = 0.009)

but not when adjusting for MVPA (p = 0.32). See Table 2 and Table S2

for more details.

In longitudinal models, greater sedentary time was associated with

greater decline in naming (β= -0.001, p= 0.03),Wechsler Adult Intelli-

genceScale - fourthedition (WAIS-IV)Coding, (β= -0.003,p=0.02) and

Delis–Kaplan Executive Function System (D-KEFS) Number Sequenc-

ing speed (β= 0.01, p= 0.01) over time. See Table 3, Figure 3, and Table

S3 for FDR corrected models. These associations remained statisti-

cally significant when also adjusting forMVPA (p-values< 0.03).When

excluding outliers, all observed associations persisted (p-values< 0.04)

except for naming (p-value > 0.13). No longitudinal interactions
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8 of 13 GOGNIAT ET AL.

F IGURE 2 Cross-sectional sedentary time x APOE-ε4 on neurodegeneration and cognition. Plots include outliers. Sedentary time interacted
with APOE-ε4 carrier status on (A) total graymatter (β= -86.9, p= 0.02), (B) parietal lobe (β= -23.9, p= 0.02), and (C) frontal lobe (β= -46.9,
p= 0.02) volumes. Models remained significant when adjusting forMVPA. Sedentary behavior time x APOE-ε4 carrier status interacted on (D)
Boston Naming Test performance (β= -0.01, p= 0.01) and (E) Hooper Visual Organization Test performance (β= -0.01, p= 0.01). All plots include
outliers. Models remained significant when adjusting forMVPA. APOE, apolipoprotein E;MVPA, moderate-to-vigorous physical activity.

by APOE-ε4 carrier status were observed (p-values > 0.08; see

Table 3).

4 DISCUSSION

In a cohort of community-dwelling older adults free of dementia at

study baseline, we examined how objectively measured sedentary

behavior related to measures of neurodegeneration and cognition

cross-sectionally and over a 7-year (mean 4.7) follow-up period. We

found that greater sedentary behavior was cross-sectionally asso-

ciated with a smaller AD-neuroimaging signature of cortical thick-

ness and worse episodic memory performance. Longitudinally, greater

sedentary time at baseline was associated with faster hippocam-

pal atrophy and faster decline in naming and information process-

ing speed performance. Many of the observed associations cross-

sectionally linking sedentary time with structural neuroimaging and

cognitive outcomes were present in APOE-ε4 carriers but not non-
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GOGNIAT ET AL. 9 of 13

TABLE 3 Sedentary time associations with longitudinal brain health and cognition.

Parameter Β Sedentary time 95%CI p-value
p-valuewith
MVPA

BrainMRI outcomes

Total graymatter volume −3.7 −13.5, 6.2 0.47 0.47

Frontal lobe volume −2.0 −6.8, 2.9 0.42 0.42

Temporal lobe volume −0.4 −2.0, 1.3 0.66 0.66

Parietal lobe volume −0.7 −3.1, 1.8 0.60 0.60

Occipital lobe volume −0.4 −1.3, 0.6 0.45 0.45

Hippocampus volume −0.1 −0.2, -0.04 0.008 0.008

AD-Neuroimaging Signature −0.00001 −0.00003, 0.00001 0.22 0.22

Neuropsychological outcomes

BostonNaming Test −0.001 −0.001, -0.0001 0.03 0.03

Animal naming −0.001 −0.002, 0.0001 0.07 0.06

WAIS-IV coding −0.003 −0.01, -0.0004 0.03 0.02

D-KEFS number sequencinga 0.01 0.002, 0.01 0.007 0.007

Executive function composite −0.0002 −0.0003, 0.00001 0.06 0.06

Hooper Visual Organization Test −0.0001 −0.001, 0.001 0.84 0.83

Episodic memory composite −0.0001 −0.0002, 0.00003 0.11 0.10

Sedentary time xAPOE-ε4 on brainMRI outcomes

Total graymatter volume 11.5 −7.3, 30.3 0.23 0.22

Frontal lobe volume 4.7 −4.4, 13.7 0.31 0.30

Temporal lobe volume −0.7 −0.7, 6.1 0.11 0.11

Parietal lobe volume 2.8 −2.0, 7.5 0.25 0.25

Occipital lobe volume 2.0 0.2, 3.8 0.03 0.03

Hippocampus volume −0.01 −0.2, 0.2 0.93 0.92

AD-Neuroimaging Signature −0.00001 −0.00004, 0.00003 0.67 0.77

Sedentary time xAPOE-ε4 on neuropsychological outcomes

BostonNaming Test 0.001 −0.0001, 0.002 0.08 0.08

Animal naming −0.001 −0.003, 0.002 0.65 0.65

WAIS-IV coding 0.001 −0.004, 0.006 0.65 0.65

D-KEFS number sequencinga 0.01 −0.001, 0.03 0.07 0.07

Executive function composite 0.00002 −0.0004, 0.0004 0.93 0.92

Hooper Visual Organization Test −0.0003 −0.002, 0.001 0.59 0.59

Episodic memory composite −0.0002 −0.001, 0.0001 0.22 0.22

Boston naming test 0.001 −0.0001, 0.002 0.08 0.08

Note: Values in bold denote p-value< 0.05.

Abbreviations: AD, Alzheimer’s disease; APOE-ε4, apolipoprotein E ε4; CI, confidence Interval; D-KEFS, Delis-Kaplan Executive Function System; MRI,

magnetic resonance imaging;MVPA, moderate-to-vigorous activity;WAIS-IV,Wechsler Adult Intelligence Scale, fourth edition.
aHigher values reflect worse performance.

carriers. These associations persisted in interactions models only

cross-sectionally and in main effects models and interaction models

longitudinally after statistical adjustment for MVPA, providing a much

better understanding of how sedentary behavior may contribute to

neurodegeneration and cognitive changes in aging independently of

physical activity, especially among individuals at greater genetic risk for

sporadic AD.

More sedentary time was related to a smaller AD-neuroimaging

marker of cortical thickness and worse episodic memory cross-

sectionally, which is supported by previous literature.15,18,23 Taken

together, these results support that a higher amount of sedentary

behavior is related to both AD-related neurodegeneration and AD-

related cognitive changes, suggesting a common mechanism of action.

Given the associations between sedentary behavior and increased
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10 of 13 GOGNIAT ET AL.

F IGURE 3 Sedentary time associations with longitudinal neurodegeneration and cognition. Plots include outliers. For naming andWAIS-IV,
higher values reflect better performance. Greater sedentary time related to smaller hippocampal volume (β= -0.1, p= 0.008), and worse naming
(β= -0.001, p= 0.03),WAIS-IV Coding (β= -0.003, p= 0.02), and D-KEFSNumber Sequencing (β= 0.01, p= 0.01) speed.Models remained
significant when adjusting forMVPA. D-KEFS, Delis–Kaplan Executive Function System;MVPA, moderate-to-vigorous physical activity;WAIS-IV,
Wechsler Adult Intelligence Scale - fourth edition.

cerebrovascular dysfunction,7 this may be one mechanism by which

sedentary behavior increases the risk for structural brain and cog-

nitive changes. It is important to note that these results were the

only results to be attenuated after statistical adjustment for MVPA,

suggesting that level of MVPA may play an important role in cross-

sectional associations linking sedentary behavior to brain health and

sedentary behavior to cognition.

Notably, associations between greater sedentary behavior, neu-

rodegeneration, and worse cognition typically persisted, especially

when taking into account MVPA longitudinally, with 87% of the sam-

ple accomplishing the amount and intensity of weekly physical activity

recommended by the CDC.48 This finding suggests that mechanisms

underlying the negative impacts of greater sedentary behavior may

be operating independently of the mechanisms underlying the pos-

itive impacts of physical activity, and perhaps physical activity does

not mitigate all the harmful effects of being sedentary. This finding

is in line with other studies suggesting the independent and adverse

impact of increased sedentary behavior onhealth outcomes.2,16 Future

work should consider sedentary behavior and physical activity as

interrelated but independent constructs.

Results also indicated that cross-sectional associations varied by

APOE-ε4 status in several brain regions (total gray matter volume;

frontal and parietal lobe volumes), which extends prior literature

suggesting that just the medial temporal lobe is susceptible to the

deleterious effects of increased sedentary behavior.19 Importantly,

observed results persisted when adjusting for MVPA and survived
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GOGNIAT ET AL. 11 of 13

correction for multiple comparisons, highlighting a robust and inde-

pendent contribution of greater sedentary behavior to global neu-

rodegeneration based on APOE-ε4 carrier status. Sedentary behavior

also interacted cross-sectionally with APOE-ε4 status on cognition,

including language and visuospatial performances. These results per-

sisted when adjusting for MVPA, again, suggesting a robust and

independent contribution of sedentary behavior. Stratified results by

APOE-ε4 status were significant for visuospatial performance in APOE-

ε4 carriers only. Future studies should continue to investigate these

relationships in the context of genetic risk factors. Taken together

with the APOE-ε4 interactions on brain MRI outcomes, APOE-ε4 car-

riers appear to be at increased risk for neurodegeneration associated

with greater sedentary behavior, independent of physical activity

level.

Longitudinal results showed that greater sedentary behavior was

associated with structural brain and cognitive changes associated with

AD over an average follow-up of 4.7 years. While these results align

with previous cross-sectional work,19,20 longitudinal data have been

sparse, with one study finding no association between greater seden-

tary behavior and brain volume over time in middle-aged adults.49

Another study found that sedentary time was not associated with cog-

nition over timebut the study focused exclusively on global cognition50

rather than individual cognitive domains as was analyzed here. To

our knowledge, our study is among the first to demonstrate that

greater sedentary behavior is longitudinally associated with smaller

hippocampal volume and worse cognitive performance. These findings

suggest that above and beyond physical activity level, more seden-

tary behavior is still worse for brain health and cognition over time in

areas that correspond with AD-specific changes, suggesting a shared

mechanism. These results complement and extend our cross-sectional

results. Interestingly, we only found a sedentary time x APOE-ε4 sta-

tus interactiononoccipital volume longitudinally (whichdidnot survive

correction for multiple comparisons) and no interactions on cognition.

The significant effect on occipital lobe volume was driven by APOE-

ε4 non-carriers, which does not align with our cross-sectional findings.
APOE-ε4 carriers are thought to have accelerated gray matter vol-

ume loss, starting possibly in middle age.51 Therefore, while increased

sedentary time may impact gray matter volume among APOE-ε4 carri-

ers, this effect may be masked by the cumulative effect of APOE-ε4 on

brain volume over the lifespan that is captured at baseline. Given the

mean age of our participants at baselinewas 71 years, futureworkmay

benefit from following participants over a longer timespan that starts

earlier in middle age.

This study has several notable strengths including a large, well-

characterized community cohort with neuroimaging, objectively mea-

sured daily activity over one week, and a comprehensive neuropsy-

chological protocol. However, there are some important limitations.

First, the sample lacked racial and ethnic diversity and was well edu-

cated, limiting the generalizability of results to the general population

of older adults. In addition, our sample was quite active while wear-

ing the actigraphy devices with 87% of participants meeting the CDC

recommendation of at least 150 min of MVPA per week.48 While such

an active sample may limit generalizability, it provides strong evidence

that even among a physically active cohort, such increased activity

is not protective from the impact of greater sedentary behavior and

brain health, especially among APOE-ε4 carriers. Somemethodological

limitations of our study are that we utilized cross-sectional MRI reg-

istration at each time point versus longitudinal registration, and the

AD neuroimaging signature we used may not capture atypical presen-

tations of AD-related neurodegeneration.52 Another methodological

limitation is using some individual neuropsychological subtests instead

of composites, which limits power but may improve specificity. Addi-

tionally, it might be important to consider the 24-h activity period

in future analyses. While there were no differences in results when

including sleep duration as a covariate (results not shown), a compo-

sitional analysis that considers movement throughout the 24-h cycle

may answer questions about the optimal allocation of physical activity,

sedentary behavior, and sleep. Finally, while using objectively mea-

sured activity is a strength of this study, the position of the actigraphy

devicemay affect the accuracy of activitymeasurements,53 so our find-

ingswithwrist actigraphymaydiffer fromother studies using a thigh or

waist device placement.

In conclusion, we found that greater sedentary behavior was asso-

ciated with worse neurodegeneration and cognition cross-sectionally

and longitudinally despite high levels of physical activity among the

cohort. These findings are particularly important in the context of

aging, as mobility limitations and greater sedentary time increases in

older adults. This studyalso contributesnovel andpreliminary informa-

tion to our understanding of how sedentary behaviormay interactwith

genetic risk forAD. Fromapersonalizedmedicine approach, healthcare

professionals might consider assessing not only a patient’s exercise

regimen but also the amount of time they are sedentary through-

out the day, recommending a reduction in such sedentary behavior in

addition to increasing daily physical activity. In summary, this study

contributes to our understanding of how greater sedentary behav-

ior is associated with AD-related neurodegeneration and cognition

changes. Future workmay consider exploring the underlying biological

mechanisms that contribute to these associations, which could inform

treatment and prevention efforts.
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